Gliomedin Mediates Schwann Cell-Axon Interaction and the Molecular Assembly of the Nodes of Ranvier
نویسندگان
چکیده
Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier.
منابع مشابه
Secreted gliomedin is a perinodal matrix component of peripheral nerves
The interaction between gliomedin and the axonodal cell adhesion molecules (CAMs) neurofascin and NrCAM induces the clustering of Na(+) channels at the nodes of Ranvier. We define new interactions of gliomedin that are essential for its clustering activity. We show that gliomedin exists as both transmembrane and secreted forms that are generated by proteolytic cleavage of the protein, and that ...
متن کاملLong-term maintenance of Na+ channels at nodes of Ranvier depends on glial contact mediated by gliomedin and NrCAM.
Clustering of Na(+) channels at the nodes of Ranvier is coordinated by myelinating glia. In the peripheral nervous system, axoglial contact at the nodes is mediated by the binding of gliomedin and glial NrCAM to axonal neurofascin 186 (NF186). This interaction is crucial for the initial clustering of Na(+) channels at heminodes. As a result, it is not clear whether continued axon-glial contact ...
متن کاملGlial M6B stabilizes the axonal membrane at peripheral nodes of Ranvier.
Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination in the central nervous system, but their role in the peripheral nervous system is less clear. Here we report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal axolemma. We show that M6B is co-localized and associates with gliomedin at Schwann cell microvilli...
متن کاملCleavage and oligomerization of gliomedin, a transmembrane collagen required for node of ranvier formation.
Gliomedin, which has been implicated as a major player in genesis of the nodes of Ranvier, contains two collagenous domains and an olfactomedin-like domain and belongs to the group of type II transmembrane collagens that includes collagens XIII and XVII and ectodysplasin A. One characteristic of this protein family is that constituent proteins can exist in both transmembrane and soluble forms. ...
متن کاملDeposition of the NG2 proteoglycan at nodes of Ranvier in the peripheral nervous system.
The node of Ranvier is a complex macromolecular assembly of ion channels and other proteins that is specialized for the rapid propagation of the action potential. A full understanding of the processes responsible for the assembly and maintenance of the node requires first the identification and characterization of the proteins found there. Here we show that NG2, a structurally unique chondroiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 47 شماره
صفحات -
تاریخ انتشار 2005